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Abstract--The investigation deals with the effect of suspended particles on the dissipation of turbulence 
energy. 

Additional dissipation is hypothesized as caused by the relative velocity between the particles and the 
fluid, and by structural changes of turbulence. 

An extended model for the turbulence energy equation is derived and applied to the case of an axially 
symmetrical free jet. The governing equations are solved numerically, and the results are compared with 
experimental data. Reasonably good agreement is obtained. 

1. INTRODUCTION 

Changes in flow characteristics are known to occur when a second phase is introduced into a 
fluid. The theoretical prediction of the changes are hindered since complete solutions of 
complex turbulent flows are lacking and since the interaction between the turbulence of the 

mainstream and the dispersed phase is not well understood. Finally, there are little experimental 
data available on this interaction. 

The aim of this investigation is to propose a model for two-phase turbulent flows, to solve 

numerically the flow field in a two-phase (air-solid particles) turbulent jet and to compare the 
results with experimental data. 

2. PREVIOUS STUDIES 
2.1 Models 

Nagarajan & Murgatroyd (1971) presented an analytical model for two-phase (gas-solid 

particles) turbulent flow in a tube. They considered a steady state problem with low loading, 
neglecting gravity effects. They assumed linear shear stress and introduced phenomenological 

coefficients, which enabled them to solve a closed system of equations and to find the relative 
velocity between the phases and the concentration profile. Later, Nagarajan (1972) extended the 

model and added gravity and electrostatic forces. In his model he introduced the turbulence 
energy equation, but neglected all terms except the dissipation and production. Consequently, 
again a linear shear stress was found and a reduction in turbulence level was observed. This 
reduction was proportional to the concentration. 

Kramer & Depew (1972) proposed a one dimensional model for a fully developed two-phase 
flow in a vertical tube. They assumed a linear mixing length and expressed the velocity fields in 
terms of various coefficients which have to be determined experimentally. 

Spalding (1971) studied an axially symmetrical turbulent jet of non uniform composition. He 
solved the conservation equations of momentum and mass, the equation of concentration and 
the equation for turbulence. In the equation for turbulent energy he introduced a 
phenomenological coefficient, which made the solution possible. 

2.2 Experimental 
Kada & Hanratty (1960) examined the effect of particulate matter on fluid flow in a tube. 

Using 0.13-0.25% volumetric concentration they found very little effect on the diffusion. The 
particles moved independent of one another, with small velocity fluctuations in the radial 
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direction. As they increased the concentration to 0.5%, particles tended to move in groups and 
they had larger velocities in the radial direction. They also observed large fluctuations in the 
concentration of the solids. (Obviously, if one wants to avoid particle interactions, concen- 

tration lower than 0.5% should be used.) 
Vasiliev (1969) surveyed the then available Russian literature. He observed that most 

research was concentrated on pipe flow and generally a reduction in turbulent energy was 
noted. He reasoned that the relative velocity between the particles and the main flow cause 
additional dissipation of turbulent energy. In contrast, Zheltov (1958) found that particles of 
density higher than that of the fluid, did not follow the fluids average velocity and caused an 

increase in the turbulence level. 
Laats (1966) and Laats & Frishman (1970) studied a dusty, round, turbulent air jet. The dust 

particles were of 20-60/~m in diameter and they used 100% mass concentration. They found 
that the normalized velocity distribution was independent of the concentration of the particles, 
but the jet was narrower and the maximum velocity decayed at a slower rate than a single phase 
jet. These results were consequently confirmed by Popper et al. (1974). 

Becker et al. (1967) found that the intensity of fluctuation in concentration was about 0.2 for 
particles of 0.5/~m. Abuaf & Gutfinger (1971) examined large particles of 250-417 ~m in an air 

jet, and found that their motion was almost not effected by the main fluid. 
Goldschmidt & Eskinazy (1966) studied two-phase jets, but found no effect of the dispersed 

phase on the main flow, because they use very low concentration. Hetsroni & Sokolov (1971) 
studied the interaction between droplets and flow properties of a two-phase turbulent jet. They 
measured the concentration profiles and the time average and fluctuating velocities of the main 

stream. 
Popper et al. (1974) studied the motion of oil droplets of 50/~m, in a round turbulent air jet, 

using a Laser-Doppler technique. Average velocities of the droplets were measured and it was 
found that at the jet exit the air velocity was higher than the droplet's velocity while at the fully 
developed region the droplets' velocity was higher than the air velocity at the same location. 

In conclusion, the theoretical models do not account for the interaction between the 
suspended particles and the turbulence of the main stream, even though such interaction is 

indicated by experimental data. 
The purpose of the present paper is to propose a suitable model for a turbulent, two-phase 

jet flow. The research was restricted to free jet flow in order to eliminate the very complex 
phenomena in the immediate vicinity of solid wall, which are not well understood even for 

single-phase flows. The results were compared with the experimental data. 

3. MATHEMATICAL ANALYSIS 

3.1 Modelling turbulence 
One of the main difficulties in solving turbulent flows is to model the so-called Reynolds 

stresses. There is a voluminous literature on the subject and we will not elaborate on it (c.f. 

Launder et al., 1972; Wolfshtein et al., 1975). 
Most of the models which do not solve a transport equation for the cross product of velocities 

uv, use Boussinesq eddy viscosity concept 

- -  at.7 
uv= -v,  ~ - ,  [1] 

where 0 is the time average velocity in the x direction, and u is its fluctuating component, v is 
the fluctuating component of the velocity in the y direction and v, is the eddy viscosity. For the 

latter Prandtl proposed 

where l is typical length scale (e.g. the width of the jet). 
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These models are valid only when the turbulence level is uniquely defined by the mean 
velocity field. When particles are suspended in the fluid, their influence on the turbulence cannot 
be predicted without turning to more sophisticated models. 

Such models connect the apparent viscosity to the turbulent energy k which is defined as 

1 
k = 2 [u2 + v2 + W2] 1/2, 

The eddy viscosity is then given by 

v, = c~L x/k, 

[31 

[4] 

where c, is a constant and L is a length scale, which can be either predicted by a special transport 
equation or related to the geometry of the flow. 

In principle a transport equation for the length scale (or some related property) is preferable 
to a geometrical perscription of L. However, currently the theoretical basis for such an equation 
is rather vague (Bradshaw 1975) and an algebraic specification of L seems preferable, at least for 
jet flows. 

3.2 The governing equations 
The governing differential equations for the mean flows of a turbulent jet carrying suspended 

particles are now developed. The derivations are in Cartesian coordinates (x~) but in the final 
stage the cylindrical form of the equations are presented, as to make it suitable for a round jet. In 
the derivation the flow is assumed to be stationary and incompressible, and the particles 
concentration are assumed small. This implies that all terms in the equations containing the mean 
particle concentration are small. It is also assumed that the particles follow the mean flow but not 
the turbulent fluctuation. Therefore, the mean particles velocity is nearly equal to the mean 
velocity of the continuous phase. The validity of this assumption is discussed in the appendix. 
The flow is assumed to be fully turbulent, and therefore the viscous forces are neglected. 

3.2.1 The mean flow equations. For a steady incompressible two-phase flow the governing 
equations are: 
Conservation of the continuous phase: 

0 0 
~ (1  - ~b) + ~-~xj [(1 -~)Uj]  =0. 

Conservation of the particulate phase: 

[5] 

0 0 
~ (q,) + ~ (q,u~.,) = o. [6] 

Conservation of momentum in the continuous phase: 

1 Op+a2U,.,~ 
[7] 

where ~6 is the volume fraction of the suspended phase and F is the force applied by the 
particles on the continuous phase. For a small relative velocity between the particles and the 
continuous phase, this force is given by the Stokes law 

18/.~ 
F, = --dr ~ ( U . . , -  U,) [8] 

where the subscript "p"  denotes the particles. 
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Equations [5--8] may be reorganized by separating all the quantities to a fluctuating and a 
time average component in the usual way 

4, =,~+,p. 

p = 15 + p, [9] 

U, = O, + u,. 

The equations are simplified by assuming the following: 

(i) the flow is stationary; 
(ii) concentration of particles is small; 
(iii) the difference between the mean velocity and mean particle velocity is small. 

The resulting mean flow equations are: 

3(], = 0, [101 
Ox~ 

0 - - - -  0 
-~, (4~u,)  = - ~ ~...,. [111 

a~O, a o0, .-, o0, _ LoP+ [121 
o--T + u"~7~,= pox, , .--~g+~(-u,.,). 

For a round jet, using the boundary layer approximation, these equations reduce to: 

3U 1 0 .  
-~x +r-~r ( ~'r)=O, [13] 

0 ~ +  -a4;_ 1 0 vTy - ;  Ty [y(- v.~)], [14] 

0 0 0 +  •aO 1 0 - -  ~ -  ~ = y Ùy [y(-uv)]. [15] 

The terms on the R.H.S. of the above equations may be approximated in the usual way 

- -  a O  
- u v  = v ,  a y '  [161 

- -  v, 3~  [171 
- v ~ ¢  = o~,~ O y  " 

For calculating the eddy viscosity a turbulence energy model is chosen. 
3.2.2 The turbulence energy equation. The turbulence energy equation is generated from the 

fluctuating velocity equation. The equation thus obtained is rather complex, because it contains 
some new correlations between velocity and particles concentration. However, for small 
concentrations the equation is simplified, and contains only three terms more than the equation 
for single-phase turbulence energy: 
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oak+ 9ak  = 
Ox ~y Convection 

1 0 [ yen Ok\  
= Y -~  ~ y ~ -~J  Diffusion 

+ v, Production 

k312 

co L Dissipation 

+ ~ [(0.., - U,),pu, + (u , , ,  - u , )u ,  ~ + ,p(up., - u,)u,] .  Added dissipation 

[18] 

The last three terms of this equation are called "added dissipation" and require some 
elaboration. 

The first added term is porportional to the relative mean velocity between the particles and 
the fluid. In the present work this quantity is assumed to be small, and therefore this term is 
neglected. 

The second added term is proportional to (up.,- uOu~. This term may be assumed to be 
bounded by 

2k >I - (uo.i - u,)u, >- 0 [191 

where the two bounds represent stationary particles (relative to the turbulent fluctuations) for 
the left bound, and particles which completely follow the turbulent velocity fluctuations for the 
right boundary. The actual value of this term is dependent on the ratio t~lt,, where t, is the time 
required for the particle to adjust to velocity fluctuations, while t, is the typical time of the 
turbulent eddies. Mathematically, this is represented by 

- (Up - u ) u  = 2 k ( 1  - e - B ( ' d  'o)  [2o] 

where B is an empirical constant. 
The typical times, t~ and t,, may be estimated by the following formulae: 

to = p"d2 , [21] 

t t ~ [22] 

and 

tp__p--'/21.314J3/21  . (pp I/2 
[23] 

The third added term is a triple correlation of velocities and concentration. No attempt has 
been made in the present study to model this term separately. 

3.2.3 The turbulent length scale. A transport equation can be written also for a turbulent 
length scale. Bradshaw (1975) pointed out that even in a single-phase flow the scale equation is 
somewhat speculative. On the other hand, previous experience suggests that the turbulent 
length scale is almost uniform in free shear layers. It was therefore decided to use the common 
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description for the length scale: 

L = A(yo.i- Yo.9) [241 

where yol and yo.9 denote the value of the cross stream coordinate y where the velocity reaches 
10% and 90%, respectively, of the maximum velocity at this distance x from the outlet nozzle. 
The constant )t will be so determined as to obtain good agreement with experimental data. 

3.3 Assessment o[ the mathematical problem 
The problem is solved by solving the system of four equations [13-15], and [18] for the 

variables U, I?, ~, and k. This is a mixed system, which is nearly parabolic. The corresponding 

boundary conditions are on the axis of symmetry (y = 0) 

At the edge of the jet (y = 5) 

V=O, 

02 = 02 = a_k = 0 .  

0y 0y 0y 
[25] 

U = ~b = k = 0. [26] 

The equations require also an initial condition, which is a prescription of U, V, ~, k at some 

distance x. 
The following auxiliary relations should be used to complete the sustem of equations: 

The flux relations [16], [17]. 
The turbulent viscosity definition [4]. 
The length scale definition [24]. 

The following numerical constants are used as well c~,, A, c~ B, which are discussed below. 

3.4 Reduction of the equations 
It may be easily seen that [14-16] are very similar to one another and may be brought to the 

common form: 

O~ +-Ofoy yl 0 V-z= = ~ (yY,) + d, [271 

where [ stands for U, $, or k, and Jt is the/-flux. 
These equations may be simplified by application of the von-Mises transformation, from 

coordinates (x, y) to coordinates (x, ~b), where ~p = J" Uydy. The resulting equation is of the form 

of a(y]~)+ d~ 
- -  = - = ,  [ 2 8 ]  

ax 0~ U 

Moreover, the continuity equation [13] is automatically satisfied. Patankar & Spalding (1970) 
have further developed this transformation by introducing a new cross-stream variable, to, 

defined by 
g, 

to = - -  [29] ~ '  

where ~ is the value of the stream function at the edge of the shear layer. Obviously, to varies 

between zero and unity. 
In the present study the Patankar & Spalding transformation and method of solution were 

used. 



NUMERICAL CALCULATIONS OF TWO-PHASE TURBULENT ROUND JET 229 

4. R E S U L T S  A N D  D I S C U S S I O N  

All the computer runs were compared with the experimental data of Hetsroni & Sokolov 
(1971). In order to enable a reliable comparison of the two-phase results, the empirical 
constants c,,, co, and A were adjusted to give good agreement with the single-phase data of 
these authors. The values chosen are 

c,, = 0.078, 

CD= I, 

A = 0.625. 

The constants were used to compute the two-phase jet reported by Hetsroni & Sokolov 
(1971). In this case oil droplets having a uniform diameter of 13/~m were suspended in an air 
stream. The Weber number for this flow was smaller than unity. 

The computations showed that the predicted reduction in the turbulence energy level was by 
far smaller than the measured one, even when the constant B was made very large (thus 
bringing the added dissipation to its maximum). It became obvious that the particles bring about 
a change in the structure of the turbulence. In the present model the structure is represented by 
the length scale. Therefore, structural variations affect the production and dissipation of 
turbulent energy. As the particles concentration is low in the present case, the structural 

variations may be assumed to be linear with the particle concentration m. Thus the following 
corrections were used: 

_ k a12 

Dissipation = (1 + Ao~b)CD--ff; 

-- t~-- 2 
Production =(1+ Ap~)Vt(--~-y~ . 

[301 

[31] 

In general AD and Ap are functions of the droplet size. For the present case the following values 
were chosen 

AD = 2.3 x 106, 

Ap = 0.72 x 106. 

In figure 1 the distribution of droplets' flux across the jet is depicted. The flux is normalized to 
the flux at centerline, and is given as the product of the mean velocity 0 and volumetric 
concentration ~. There are four curves in the figure. Curve 1 is the calculated flux distribution for 
all droplets concentrations. Curve 2 is the average of the experimental data (Hetsroni & Sokolov 
1971), while curves 3 are the bounds of these data. 

The calculated results are well within the spread of the experimental data. All the 
distributions are well described by Gaussian curves. 

In figure 2 the calculated distribution of time-average velocities are shown at xID = 35 and 
compared with the experimental data. The agreement between the two sets of curves is very good 
in the inner part of the jet but deteriorates toward the edge of the jet, where the experimental 
accuracy is low. 

It can be observed that the width of the jet is reduced with the increase of droplet 
concentration. Generally, such effects are associated with reduction of the turbulence level. 
Indeed, this trend was suggested in the previous paragraphs. 

The narrowing of the jet is further shown in figure 3, where the calculated half width of the jet 
is plotted. 
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Figure I. Distribution of droplets flux across the jet. I, calculated; 2, average of experimental data (Hetsron/ 

& Sokolov 1971); 3, bounds of experimental data. 
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Figure 2. Distribution of time average velocity in a single and two-phase jet at x/D = 35. 

The half width is still linear with respect to the distance from the nozzle, but the virtual origin 
of the jet is shifted downstream• 

In figure 4 the calculated turbulent energy distributions across the jet are plotted at x/D = 35, 
and compared with the experimental data of Hetsroni & Sokolov (1971). Since hot-wire 
measurements in two-phase systems is very difficult, the accuracy of the experimental data is 
relatively low. Therefore, only qualitative agreement between the calculated curves and the data 
can be expected, and indeed only such agreement was obtained. As suggested above, a significant 
reduction in the turbulent energy is observed in the two-phase jet. The reduction of energy level 
is not linearily proportional to the concentration• 

The calculated Reynolds stress distribution across the jet at x/D = 35 is shown in figure 5. 
Again, the addition of particles reduces the Reynolds stress. 
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Figure 4. Distribution of turbulent energy across the jet at x/D = 35. 

5. CONCLUSIONS 

The dispersed phase causes a reduction in turbulence energy level of the flow. The simplistic 
hypothesis that this reduction is due to viscous energy dissipation around the particles is not 
sufficient to explain this phenomenon. 

Consequently, it must be postulated that the particles cause other changes to the structure of 
the turbulence. We propose to model these changes as described by [30] and [31]. By adding these 
terms we were able to obtain reasonably good agreement with the experimental results. 

Still, the mechanism of the interaction between the dispersed phase and the turbulence is not 
well understood and additional work, experimental as well as theoretical, is needed. 
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Figure 5. Reynolds stress across the jet at xlD = 35. 
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A P P E N D I X  

TYPICAL TIMES 
In a two-phase turbulent jet several time scales may be defined: 
(i) Mean-flow time is the time required for a small bulk of fluid to travel one local jet width. 

This quantity varies across the jet, and its representation is given by 

8 
tm = - -  [A-l] OM 

where 8 and Ou are the local jet width and maximum velocity. 
(ii) Small-scale-turbulence time is the time scale of the small dissipative structures in the flow 

field. It is given by 
tt = (vie) il2 [A-2] 

where • is the dissipation rate. 

(iii) Particles time is the time scale which is related to the time required for the velocity 
difference between a spherical particle and the mean flow to vanish when the mean flow velocity 
is constant. It is given by 

ppd 2 
t o = - -  

IZ 

where pp is the particle density and/~ is the viscosity of the continuous phase. 
The ratios of the above time scales define the character of various processes in the flow. Two 

such ratios are important in the present case: 

MR,, = t .  = p O ~  p~ a s 
tM /z P d 2, [A-4] 

( Pk ~12 6~ 312 Pod 2 
N ~  = t~ = \ - - -~-- /  P 85, [A-5] 

where the relation • ~ k3~218 was used. Clearly, Nrv is proportional to the relative velocity 
between the particle and the fluid and presents an indicator to the importance of the relative 
velocity. 

In a similar way, when N~  is large, the particles do not follow the small eddies, while a small 
NTo indicates that the particles closely follow the turbulent fluctuations. 

In the present computer runs the typical values are as follows: 

bo  8-- 0.15X, UM ~- 8Uo~,  d = 1.3 x 10-6 m, 

p = 1.4 kg/m 3, p~ = 1000 kg/m 3, /~ = 2 x  10-5 kg/m • sec, k - 0 . 1 0 ~  

MF Vol. 3, No. 3--C 
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at the outlet nozzle 

Therefore, 
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bo = 0.025 m, Uo = 50 m/s. 

9 2 59,x10(  
which is very large. Therefore, the particles follow the mean flow. 

Nrp = 519 ( ~ o  -2 

which is of order unity for Xlbo = 20 + 30. Therefore the particles do not follow the small 

turbulent fluctuations. 


